- 畅销套餐
- 精选套餐
- 人气套餐
- 尊享套餐
- 高薪套餐















- 课程介绍
- 课程大纲
适合人群:
高等院校相关专业师生;准予培训机构的师生;数据分析、数据挖掘人员;人工智能、深度学习入门读者;数据背景的数据科学家;进行深度学习应用研究的科研人员。
你将会学到:
学到深度学习理论,更能通过案例学习能提升代码动手能力,能将所学知识迁移到自己实际工作
课程简介:
第1章将介绍深度学习基础,常用激活函数、神经网络拓扑结构及损失函数;然后详细介绍了如何安装 Python 的科学计算环境 Anaconda、TensorFlow2 的 CPU 版本及 GPU 版本; 最后通过深度学习中的相当于“Hello Word”的入门数据集 MNIST 为例,介绍如何利用 Keras 构建深度学习模型。
第2章:
1、利用OpenCV进行图像预处理,包含图像读取、显示和保存,图像几何变换等
2、利用TensorFlow进行图像预处理,包含图像缩放、裁剪、翻转等
3、利用Jieba进行中文文本分词,并掌握如何添加自定义词典
4、利用Keras进行文本预处理,重点掌握填充序列pad_sequences的使用
第3章如何用Keras开发深度学习模型。首先介绍Kereas模型生命周期包含5个步骤:定义网络、编译网络、训练网络、评估网络、做出预测。然后介绍Keras的顺序型API和函数式API两种模型、TensorBoard模型可视化、Keras中的回调函数及模型的保存及加载等知识。
第4章首先介绍了卷积神经网络基本原理及实现,并通过CIFAR-图像的案例实践帮助读者掌握卷积神经网络的使用。接着介绍迁移学习的基本原理,并通过Keras Applications 和TensorFlow Hub 两种方式实现迁移学习。最后介绍强化深度学习的相关内容。
第5章依次介绍了简单循环神经网络(SimpleRNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、序列到序列(Seq2Seq)及Transformer模型的基本原理及实现。
第6章介绍了自编码器基本结构以及常用自编码器:简单自编码器、稀疏自编码器、堆栈自编码器、卷积自编码器、降噪自编码器以及堆循环自编码器的基本原理及实现。利用自编码器建立无监督的推荐系统的实践,引导读者将自编码器应用在不同实际场景中。
第7章首先介绍了生成式对抗网络GAN基本原理,使用GAN生成手写数字5图像。然后介绍深度卷积生成式对抗网络DCGAN基本原理及案例实践。
第8章介绍了模型评估及优化技巧。分别介绍了数值(回归)预测和概率(分类)预测的常用评价指标及Python实现,然后介绍了基于梯度下降的优化、自适应学习率算法、网格搜索、防止模型过拟合等模型参数优化手段。紧接着介绍如何在tf.Keras中使用Scikit-Learn优化模型和使用KerasTuner进行超参数调节。
课程大纲-《深度学习:从入门到精通:基于Keras》
第1章深度学习基础(4小时23分钟28节)
“谢佳标”老师的其他课程更多+