
- 畅销套餐
- 精选套餐
- 人气套餐
- 尊享套餐
- 高薪套餐



















- 课程介绍
- 课程大纲试看
- 讲师好课18
- 学员评价
适合人群:
图像领域工作人员;计算机视觉在校学生;希望从事于图像识别领域人员
你将会学到:
掌握深度学习PyTorch框架使用方法;垃圾图像分类真实案例项目实战
- 掌握数据可视化方法和实战工具使用
- 掌握CNN网络图片分类项目应用
- 掌握图片垃圾分类项目实现
- 获取免费答疑服务和博客学习资料
课程简介:
【课程介绍】
《PyTorch实战-深度学习之图像分类( 垃圾分类案例)》 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下**话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。
从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,全程实战操作,以最接地气的方式详解每一步流程与解决方案。
课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。
【课程要求】
1.开发环境:python版本:Python3.7+; torch 版本:1.2.0+; torchvision版本:0.4.0+
2.开发工具:Pycharm;
3.学员基础:需要一定的Python基础,及深度学习基础;
4.学员收货:学习**科技图像分类关键技术;
5.学员资料:内含完整程序源码和数据集;
6.课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码
【课程收益】
1.学习深度学习PyTorch框架使用方法
2.熟练进行项目开发
3.学习各大经典网络结构
4.提供实战模板,快速提升深度学习的实际项目经验
5.学习完项目,垃圾图像分类项目可以直接用到实际项目中,对准备BAT级别互联网科技公司面试有显著的帮助
【课程特色】
阵容强大
讲师一直从事与一线项目开发,高级算法专业人士,一直从事于图像、NLP、个性化推荐系统热门技术领域。
仅跟前沿
基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届**前沿技术知识要点。
实战为先
根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部 署。精心设计工业实战项目
保障效果
项目实战方向包含了学术届和工业届最前沿技术要点
项目包装简历优化
课程内垃圾分类图像实战项目完成后可以直接优化到简历中
【课程思维导图】
【课程代码案例】
课程大纲-基于深度学习的垃圾图像分类
资料下载“艾文”老师的其他课程更多+
5