Python数据分析行业案例课程--信用评分方法

使用银行征信和互联网金融征信两个真实案例,完整实现了评分卡模型在相关业务领域中的构建流程。

5.0 (个评分) 4351个学员

高级 66课时 13小时9分钟 2021/08/25更新

下载

二维码 下载学堂APP 缓存视频离线看

  • 课程介绍
  • 课程大纲 试看
  • 讲师好课 29
  • 套餐推荐
  • 学员评价

适合人群:

金融领域、风险管理、电信领域、从事评分卡及数据挖掘建模的人员。评分卡的开发与应用,这门课程就够了。

课程目标:

使用银行征信和互联网金融征信两个真实案例,完整实现了评分卡模型在相关业务领域中的构建流程。

课程简介:

注意:

1. 本行业案例课程为Python 3 数据分析系列课程的行业案例部分,学员请务必先观看课程介绍免费视频,确认已学习本课程所需Python分析技能。

2. 本课程的核心目的是协助学员学习具体业务场景下的解决方案,为降低学员学习难度,课程中均尽量使用简明易懂的代码进行数据整理和模型实现,没有出现任何晦涩高深的代码,并尽量基于pandas、sklearn等标准包接口编程。故此希望看到笔者在课程中炫技的各位编程高手请勿购买本系列课程。


请至PC端网页下载本课程代码课件(即由原始.ipynb文件保存的html文档)及数据。


【课程简介】

信用评分是非常特殊且重要的领域,除银行业外,近年来在P2P,网络征信等新兴领域中也颇受重视。本课程使用银行征信和互联网金融征信两个真实案例数据,完整介绍了信用评分卡模型在相关业务领域中的构建和实施流程。整个案例可作为分析模板供学员在信用评分相关的分析项目中直接套用。

除集中在解决实际业务问题外,课程还重点介绍了评分卡方法的建立步骤与注意事项,以及变量分箱方法、K-S方法等的实际应用等技术细节,以便学员深刻理解和学习评分卡模型的实际应用细节。


【课程特色】

可作为业务分析模板:课程内容完全基于真实业务分析场景构建,提供全部编写的函数工具和源代码,可直接作为同类业务场景中的业务分析模板加以使用。

双案例课程结构:银行案例用于详细阐述评分卡模型的构建细节,互联网金融案例则进一步拓展到自动化分析、大规模变量筛选等互联网金融领域的特殊需求方面,案例代表性和分析需求充分差异化,分析难度梯次上升,更有利于拓展学员的分析能力。


【课程长度】

总时长:12小时


image.png


推广1.png

展开更多

课程大纲-Python数据分析行业案例课程--信用评分方法

展开更多

5

条学员评分 超过  “数据挖掘与分析”   99%的课程
      展开更多
      加载中
      没有了哦~

      ¥419.00

      立即购买
      关注公众号 领VIP会员
      下次再说

      点击打包下载,即可获取该课程全部资料

      打包下载
      16周年庆满减满200减20元 满400减40元
      是否单独购买该课程?
      直接购买 去凑单
      在线
      客服
      APP
      下载

      下载Android客户端

      下载iphone 客户端

      官方
      微信

      关注官方微信

      返回
      顶部