公开笔记对他人可见,有机会被管理员评为“优质笔记”
{{ noteEditor.content.length }}/2000
包含本视频的课程:
整个人类历史都是偶然的吗?我在统计学里寻找答案
这段内容介绍了统计学的重要性和在多个方面的应用。讲解者首先说明统计学怎样理解并应用于日常工作和生活中的随机现象,例如在供应链管理中如何处理设备故障率和配件库存问题。内容强调了单个案例和总体规律的区别,用一个关于健康与不良习惯的案例进行了说明。观众通过学习统计学可以更好地理解和预测随机事件的规律,优化决策过程,减少不确定性。内容适合对数据分析、规律识别和决策优化都感兴趣的专业人士。
Pandas对数据作简单浏览
文东老师详解了使用Pandas库进行数据处理的基本概念,包括但不限于数据框(DataFrame)的认识和操作,以及数据的展示方法。教程中提到了如何使用print命令在不同开发环境中完整显示数据框内容,以及特殊的notebook环境下省略print的操作。介绍了如何通过info函数详细了解数据框包含的变量、各变量的数据类型及存储信息,并无缺失值。数据类型的示例包括整数、浮点数和对象等。文东老师进一步展示了head和tail两个命令,便于查看数据框的顶部和尾部记录。整个视频针对入门Python数据科学领域的人士,尤其是那些希望在数据分析、数据处理方面提升能力的学生或专业人士。
卡方检验statsmodels实现
视频介绍了如何在states mode环境下利用列链表对象进行卡方检验及相关数据分析工作。演示了如何通过condition ent tables的table类创建对象,设定参数处理单元格频数,以及如何计算和解读边际概率分布、独立概率分布、期望频数、pearson残差和卡方贡献值。还涉及了对残差的另一种标准化处理和两两比较的方法。视频还讨论了如何处理有序分类变量和连续变量,以及如何导入和使用states mode的TBL模块进行独立性检验,举例说明了如何计算统计量、自由度和P值。
Oracle数据库日常巡检方法
Oracle数据库管理者需掌握日常巡检的重要性及其操作流程。包括确保数据库的正常运行和备份、检查性能指标和故障日志(如ORA错误)、验证索引有效性、监控表空间和操作系统空间使用情况,以及进行数据库恢复测试。这些操作可通过巡检脚本实现,也要注意与系统日志相结合的数据库性能监控。演示了使用ADDM脚本进行性能分析的过程,并强调了处理领导交代任务的必要性。内容适合数据库管理员、运维工程师、Oracle数据库专家、数据库性能调优人员、IT技术支持人员。
SQL Server 2005安装
视频教程指导观众完成COC2005的安装过程。详述从安装介质自动启动,接受许可条件,到必备组件安装如downa remark2.0和sql native plank。强调系统配置检查的重要性,涵盖软硬件要求。介绍安装向导操作,包括注册信息输入、组件选择如数据库服务、medicine service,特别指出reporting service的IS依赖性。引导用户通过实例管理安装多个数据库实例,并提供账户权限配置及服务启动方案。最后,讲解身份验证设置,包括windows验证和混合模式,并强调排序规则的设置重要性。内容适合数据库管理员、服务器运维人员、IT专业学生、系统架构师、软件开发人员。
Python性能这么差,为什么会在AI中大量使用
尽管Python相较于C++性能较低,但在AI领域占主导的原因在于它作为粘合剂角色的效能与扩展性。Python在数据交互方面与C++或显卡紧密结合,AI行业对此依赖重大。更重要的,科学家原先为替换Fortran选用Python,进而形成强大的科学计算生态。Python的数学库如NumPy在科学计算界获广泛应用,助推了其在AI领域的延续。实际上,在金融AI公司的真实案例中,Python用于快速原型开发,而生产环境转向性能更优的C++。同时,Python全局锁的特性在实验阶段不成问题,但正式环节需要利用C++等语言进行性能提升。
【职场秘籍】怎样安全的度过试用期?快来get试用期“安全攻略”!
在职场中安全度过试用期关键在于明确个人定位与积极主动的工作态度。成功案例描述了一个口才良好的学员如何因过度包装自己导致职位不匹配而被辞退,而失败案例则讲述了即便技术能力强,因缺乏主动沟通和团队协作而多次被辞退。从这些案例中可以看出,对于新人而言,既要真实展示自己的技术水平,又要积极融入团队,保持与周围同事的良好沟通。此外,及时向上级报告工作进展、遇到问题时主动寻求帮助,也是确保试用期顺利过关的重要因素。适应职场,不仅需要扎实的技术功底,还必须具备良好的工作态度与沟通协作能力。
还百度上搜数据集吗?记住这个地方啥数据都有!
在快速获取准确数据的需求日益逼切的背景下,传统搜索引擎和社交媒体平台常因广告和套路层出不穷而不尽人意。为解决业界数据紧缺和数字化人才的匹配问题,"cover"平台应运而生。该平台聚集了各行业积累的大量数据,积极搭建连接数字化需求与解决方案提供者之间的桥梁。通过提交数据并提供奖金激励,平台鼓励技术人员提供创新的解决方案。此外,平台不仅提供数据资源,还包含源码和完整的项目配套,为数据分析和项目开发提供了全方位的支撑。适合有志于数据分析、技术解决方案开发以及数字化转型领域的专业人士。