YOLOv8目标检测实战:TensorRT加速部署

掌握YOLOv8目标检测的TensorRT加速和INT8量化部署方法

2139人学习

中级38课时2024/01/19更新

二维码下载学堂APP缓存视频离线看

白老师
白老师高级讲师讲师评分5.0学员390731课程82

教授、博士生导师、人工智能专家

更多
    • 畅销套餐
    • 精选套餐
    • 人气套餐
    • 尊享套餐
    • 高薪套餐
  • 课程介绍
  • 课程大纲

适合人群:

希望学习YOLOv8目标检测TensorRT部署方法的学员

你将会学到:

掌握YOLOv8目标检测的TensorRT加速和INT8量化部署方法

课程简介:

PyTorch版的YOLOv8先进的高性能实时目标检测方法。 TensorRT是针对英伟达GPU的加速工具。

本课程讲述如何使用TensorRT对YOLOv8目标检测进行加速和部署。

• 采用改进后的tensorrtx/yolov8的代码,使用TensorRT API构建优化推理引擎

• 支持在GPU上端到端TensorRT加速部署,包括预处理(图像resize, BGR->RGB,归一化)、网络推理、后处理(非极大抑制) 均在GPU上执行

• 支持FP16和INT8量化加速

• 提供C++和Python的TensorRT加速命令接口

• 分别在Windows和Ubuntu系统上做YOLOv8的TensorRT加速和部署演示

• 支持图片、图片文件夹、视频文件的TensorRT的加速推理

• 提供YOLOv8的TensorRT加速部署代码和代码解析文档

实测推理速度提高3倍以上,采用INT8量化加速后推理速度更快。RTX 3060 GPU上端到端处理速度约2.5毫秒,INT8量化加速后推理速度可小于2毫秒。

课程内容包括:原理篇(YOLOv8网络架构与组件、TensorRT基础、TensorRT INT8量化、CUDA编程方法)、实践篇(Windows和Ubuntu系统上的TensorRT加速和INT8量化部署演示)、代码解析篇(YOLOv8的TensorRT加速的代码解析) 。

课程内容.png

展开更多

课程大纲-YOLOv8目标检测实战:TensorRT加速部署

展开更多
在线
客服
APP
下载

下载Android客户端

下载iphone 客户端

官方
微信

关注官方微信

返回
顶部