UNet(TensorFolow2)图像语义分割实战:训练自己的数据集

使用UNet图像语义分割技术来训练自己的数据集

5.0 (个评分) 4547个学员

中级 24课时 4小时33分钟 2021/11/13更新

下载

二维码 下载学堂APP 缓存视频离线看

  • 课程介绍
  • 课程大纲 试看
  • 讲师好课 48
  • 套餐推荐
  • 学员评价

适合人群:

希望掌握TensorFlow2版本的UNet图像语义分割实战技术的同学们

课程目标:

使用UNet图像语义分割技术来训练自己的数据集

课程简介:

注意:本课程已从Keras更新至TensorFlow2

UNet是一种基于深度学习的图像语义分割方法,尤其在医学图像分割中表现优异。

本课程将手把手地教大家使用labelme图像标注工具制作自己的数据集,生成Mask图像,并使用UNet训练自己的数据集,从而能开展自己的图像分割应用。

本课程有三个项目实践:

(1) Kaggle盐体识别比赛 :利用UNet进行Kaggle盐体识别

(2) Pothole语义分割:对汽车行驶场景中的路坑进行标注和语义分割

(3) Kaggle细胞核分割比赛 :利用UNet进行Kaggle细胞核分割

本课程使用TensorFlow2版本的UNet,在Ubuntu系统上用Jupyter Notebook做项目演示。 包括:数据集标注、数据集格式转换和Mask图像生成、编写UNet程序文件、训练自己的数据集、测试训练出的网络模型、性能评估。项目代码也可在Windows上运行,课程提供Windows环境搭建方法。

本课程提供项目的数据集和Python程序代码。

相关课程:UNet(PyTorch)图像语义分割实战:训练自己的数据集

https://edu.51cto.com/course/29533.html



unet.jpg


展开更多

课程大纲-UNet(TensorFolow2)图像语义分割实战:训练自己的数据集

展开更多

5

条学员评分 超过  “计算机视觉”   99%的课程
      展开更多
      加载中
      没有了哦~

      ¥88.00

      立即购买
      关注公众号 领VIP会员
      下次再说

      点击打包下载,即可获取该课程全部资料

      打包下载
      双11大促每满100下单立减20
      是否单独购买该课程?
      直接购买 去凑单
      在线
      客服
      APP
      下载

      下载Android客户端

      下载iphone 客户端

      官方
      微信

      关注官方微信

      返回
      顶部