公开笔记对他人可见,有机会被管理员评为“优质笔记”
{{ noteEditor.content.length }}/2000
数据治理实战课程-数据治理实战课程内容介绍
本课程重点讲解数据治理的全过程与实践,从数据接入的基础开始,深入到建立数据标准、实施数据质量和安全措施,并且涉及云数据管理。进一步解析数据仓库的设计,实时与离线数据处理以及工作流的开发。重点强调了数据治理在形成数据资产后的管理和应用,展示如何对外提供数据服务。课程穿插了不同阶段的文档模板和高效工具使用,旨在提升实施效率和质量。
数据治理实战课程-数据治理概述
视频内容围绕数据治理的概念和框架展开讨论,介绍了国际上伽马组织编写的《MA book》及其所包含的数据管理知识,并说明了数据治理相关的认证体系,如国际的CDMP以及国内的CDG和CDGP。另一方面,提及了国内评估企业数据管理能力的DCMM框架模型,并讨论了数据治理和数据管理的核心目标——将数据资产化以支撑上层的应用和业务。内容适合对数据治理有兴趣进一步了解和深入研究的人员,尤其是数据管理专业人士和希望获取相关认证的个体。
数据治理实战课程-前景展望
数据治理领域在政府扶持和行业需求推动下,展现了显著的增长趋势,并成为国家战略层面的重点。随着大数据的深入应用,数字化转型成为不同行业的共同目标。市场对数据治理专业人才的需求激增,但供给不足,导致企业招聘困难,数据治理人才市场价值上升。此外,从业者职业发展路径清晰,涵盖数据工程师、项目经理、产品经理到架构师等多方位角色。教育背景和实际技能的差距成为专业教育与行业需求之间的挑战,强化培训和学习体系是补缺培养人才的有效途径。行业对数据治理专业的广泛应用和相对较低的入门门槛提供了更多就业机会和人才晋升的空间。
Oracle数据库日常巡检方法
Oracle数据库管理者需掌握日常巡检的重要性及其操作流程。包括确保数据库的正常运行和备份、检查性能指标和故障日志(如ORA错误)、验证索引有效性、监控表空间和操作系统空间使用情况,以及进行数据库恢复测试。这些操作可通过巡检脚本实现,也要注意与系统日志相结合的数据库性能监控。演示了使用ADDM脚本进行性能分析的过程,并强调了处理领导交代任务的必要性。内容适合数据库管理员、运维工程师、Oracle数据库专家、数据库性能调优人员、IT技术支持人员。
SQL Server 2005安装
视频教程指导观众完成COC2005的安装过程。详述从安装介质自动启动,接受许可条件,到必备组件安装如downa remark2.0和sql native plank。强调系统配置检查的重要性,涵盖软硬件要求。介绍安装向导操作,包括注册信息输入、组件选择如数据库服务、medicine service,特别指出reporting service的IS依赖性。引导用户通过实例管理安装多个数据库实例,并提供账户权限配置及服务启动方案。最后,讲解身份验证设置,包括windows验证和混合模式,并强调排序规则的设置重要性。内容适合数据库管理员、服务器运维人员、IT专业学生、系统架构师、软件开发人员。
MySQL备份恢复12个项目
视频内容围绕MySQL数据库的备份与恢复操作案例展开,强调了六种不同工具(mysql dump、mysql pub、my dumper、cp、Xtrabackup 以及公司官方企业版工具)的实际应用。通过具体情境模拟,比如数据库误删除和数据目录被清空,讲解了如何使用上述工具进行数据恢复。课程设计注重于实战操作,旨在使学员能够快速掌握基本的备份恢复技巧,进而处理实际工作中可能遇到的数据丢失事件。内容强调快速入门并以后续深入学习为目标,适合初级和中级数据库管理员,特别是新进技术人员快速培养实战能力。
Python爬虫:Requests库的基本用法
本次内容聚焦于使用Python的requests库进行网页数据爬取。介绍了requests库作为一个无需转基因的HTTP库,在人类获取网页数据过程的适用性与便捷性。视频解释了如何安装库,以及如何使用GET方法来获取网页对象。其中,还包含了HTTP状态码的讲解,状态码帮助开发者识别HTTP请求的响应状态。强调了文本编码的重要性,在处理爬取到的文本数据时需设置合适的编码以避免乱码问题。此外,视频提供了通过requests库对网页文本信息提取的具体代码实例演示,旨在帮助开发者理解如何使用这一工具进行数据抓取。
大数据架构与生态圈01
视频内容聚焦于大数据技术的发展三个阶段,其中大数据1.0时代遍及2006-2009年,以Apache基金会建立的Hadoop开源项目和相关技术(如HDFS、MapReduce、HBase)为标志,主要解决大规模结构化数据批处理问题。2.0时代自2009年至2015年,以Spark为主流计算引擎,着重于结构化数据处理与多种流计算引擎的出现。而3.0时代则自2015年开始,注重非结构化数据处理、数据共享及解决数据孤岛问题,推进大数据与人工智能、云计算技术的融合。内容指出大数据技术依据不同行业需求有不同架构,并且强调技术的持续更新与业务适配性。