数据科学之拉格朗日乘子法

5023未经授权,禁止转载
Python人工智能概率论统计学贝叶斯kmeans偏导数极值点拉格朗日乘数法约束条件最优化问题函数极值数学建模多变量微积分等高线法向量
本节课探讨了如何求解实际问题中的函数极值,特别是在约束条件下的极值求解技巧。介绍了偏导数及其在寻找函数极值中的应用,并通过图形化的方式解释了等高线与切线的关系在判定极值点中的作用。进一步引入了拉格朗日乘数法来处理包含约束条件的最优化问题,讲述了法向量平行的条件如何导致拉格朗日乘数法的成立,并且通过等式和不等式约束条件的例子,演示了如何构建方程并求解未知数。这个课程适合需要解冔数学最优化问题,特别是涉及约束条件的人群,包括数学建模爱好者、工程师及数学相关专业的学生。
讨论{{interaction.discussNum ? '(' + interaction.discussNum + ')' : ''}}
ad
发布
头像

{{ item.user.nick_name }} {{ EROLE_NAME[item.user.identity] }}

置顶笔记
讨论图
{{ item.create_time }}回复
  • 删除

    是否确认删除?

    确认
    取消
  • {{ item.is_top == 1 ? '取消置顶' : '置顶'}}

    已有置顶的讨论,是否替换已有的置顶?

    确认
    取消
{{ tag.text}}
头像
{{ subitem.user.nick_name }}{{ EROLE_NAME[subitem.user.identity] }}
{{ subitem.create_time }}回复
删除

是否确认删除?

确认
取消
发布
{{pageType === 'video' ? '讨论区抢占沙发,可获得双倍学分' :'讨论区空空如也,你来讲两句~'}}
发布
{{tips.text}}
{{ noteHeaderTitle }} 笔记{{ hasMyNote ? '我的笔记' : '记笔记' }}
{{ hasMyNote ? '我的笔记' : '记笔记' }}
优质笔记
更新于:{{ $dayjs.formate('YYYY-MM-DD HH:mm:ss', item.last_uptime*1000) }}
头像
{{ detail.username }}

公开笔记对他人可见,有机会被管理员评为“优质笔记”

{{ noteEditor.content.length }}/2000

公开笔记
保存
讲师头像
唐宇迪
同济大学硕士,华东理工大学博士,精通机器学习算法,主攻计算机视觉方向,著有《跟着迪哥学Python数据分析与机器学习实战》,线上选课学员30W+,累计开发课程50余门覆盖人工智能热门方向。联通,移动,中信等公司特邀企业培训导师,全国高校教师培训讲师,开展线下与直播培训百余场,具有丰富的授课经验。课程风格通俗易懂,擅长用非常接地气的方式讲解复杂的算法问题。
TA的课程

包含本视频的课程:

接下来播放:
自动连播