感知器代码实现逻辑或和与

378 未经授权,禁止转载了解课程
课程介绍
讨论{{interaction.discussNum ? '(' + interaction.discussNum + ')' : ''}}
适合人群
对人工智能感兴趣
你将会学到
本系列中为大家生动形象得讲解神经网络的来源和相关知识点,此外通过案例清楚的了解BP算法的来龙去脉。
  • 了解神经网络的来源和相关概念
  • 通过案例清楚的了解BP算法的来龙去脉
课程简介

本系列中为大家生动形象得讲解神经网络的来源和相关知识点,此外通过案例清楚的了解BP算法的来龙去脉。

1.1神经网络来源
1.2了解感知器认知过程
1.3感知器代码实现逻辑或和与
1.4感知器网络和S型神经元及激活函数
1.5神经网络之结构详解
1.6.1神经网络BP算法前置知识
1.6.2神经网络BP算法W7过程演练
1.6.3神经网络BP算法W1过程和总结
1.6.4神经网络BP算法python执行过程

资料:


视频:




展开更多
发布
头像

{{ item.user.nick_name }} {{ EROLE_NAME[item.user.identity] }}

置顶笔记
讨论图
{{ item.create_time }}回复
  • 删除

    是否确认删除?

    确认
    取消
  • {{ item.is_top == 1 ? '取消置顶' : '置顶'}}

    已有置顶的讨论,是否替换已有的置顶?

    确认
    取消
{{ tag.text}}
头像
{{ subitem.user.nick_name }}{{ EROLE_NAME[subitem.user.identity] }}
{{ subitem.create_time }}回复
删除

是否确认删除?

确认
取消
发布
讨论区空空如也,你来讲两句~
发布
{{tips.text}}
{{ noteHeaderTitle }} 笔记{{ hasMyNote ? '我的笔记' : '记笔记' }}
{{ hasMyNote ? '我的笔记' : '记笔记' }}
优质笔记
更新于:{{ $dayjs.formate('YYYY-MM-DD HH:mm:ss', item.last_uptime*1000) }}
头像
{{ detail.username }}

公开笔记对他人可见,有机会被管理员评为“优质笔记”

{{ noteEditor.content.length }}/2000

公开笔记
保存
提问

讲师收到你的提问会尽快为你解答。若选择公开提问,可以获得更多学员的帮助。

记录时间点
记录提问时视频播放的时间点,便于后续查看
公开提问
提交