公开笔记对他人可见,有机会被管理员评为“优质笔记”
{{ noteEditor.content.length }}/2000
基于YOLOv8模型的抽烟行为检测系统 1
基于YOLOv8模型的垃圾满溢检测.系统
基于YOLOv8模型的老虎目标检测系统
搭建私人助理大模型需要什么环境?
讲者在视频中指导如何搭建Streamlit环境,突出点在于使用Python语言进行开发,推荐使用Anaconda进行一站式环境配置,易于管理包和编辑器。强调Streamlit的安装非常简单,仅需使用pip进行安装无需复杂配置。此外,还推荐了几种集成开发环境(IDE)如PyCharm、VS Code,依据个人喜好选择。这项内容适合于已经对Python有一定了解的人群,尤其是有兴趣在数据科学和Web应用快速开发领域进步的开发人员。
Python性能这么差,为什么会在AI中大量使用
尽管Python相较于C++性能较低,但在AI领域占主导的原因在于它作为粘合剂角色的效能与扩展性。Python在数据交互方面与C++或显卡紧密结合,AI行业对此依赖重大。更重要的,科学家原先为替换Fortran选用Python,进而形成强大的科学计算生态。Python的数学库如NumPy在科学计算界获广泛应用,助推了其在AI领域的延续。实际上,在金融AI公司的真实案例中,Python用于快速原型开发,而生产环境转向性能更优的C++。同时,Python全局锁的特性在实验阶段不成问题,但正式环节需要利用C++等语言进行性能提升。
Python爬虫:Requests库的基本用法
本次内容聚焦于使用Python的requests库进行网页数据爬取。介绍了requests库作为一个无需转基因的HTTP库,在人类获取网页数据过程的适用性与便捷性。视频解释了如何安装库,以及如何使用GET方法来获取网页对象。其中,还包含了HTTP状态码的讲解,状态码帮助开发者识别HTTP请求的响应状态。强调了文本编码的重要性,在处理爬取到的文本数据时需设置合适的编码以避免乱码问题。此外,视频提供了通过requests库对网页文本信息提取的具体代码实例演示,旨在帮助开发者理解如何使用这一工具进行数据抓取。
我正在参加51CTO学堂年度讲师评选,快来投我一票吧!
王老师凭借在IT教育行业十六年的深厚经验,专注于青少年编程教育,旨在通过技术指导帮助年轻学生实现更好的个人成长。王老师的教学动力源自于社会各界的支持和信任,此次参加51CPU年度讲师评选活动也寻求更广泛的认可。
信奥赛C++
C++语言在信息学奥林匹克竞赛中扮演着重要角色,提供了高效的编程手段和强大的功能支持。擅长进行复杂程序设计,特别是在动态规划等算法问题上展示出高效的解决方案。其跨平台性和可扩展性使其在多个领域如科学计算、图形学和人工智能领域都有所应用。丰富的标准库和第三方库资源,进一步提升了C++的开发效率,对于追求深入计算机编程技术的人来说是一种提升竞争力的方式。适合有志于深化编程能力和求解复杂问题的开发者和学习者。