目标检测-YOLOv3原理

1.6万 未经授权,禁止转载了解课程
课程介绍
讨论{{interaction.discussNum ? '(' + interaction.discussNum + ')' : ''}}
适合人群
具有一定深度学习基础,希望学习YOLOv3目标检测的实现原理与Darknet源码的同学们
你将会学到
学习YOLOv3目标检测原理,解读C语言实现的Darknet源码
课程简介

Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. (冗谈不够,放码过来!)。

代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。

 

YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。


YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。

 

本课程将解析YOLOv3的实现原理和源码,具体内容包括:

l  YOLO目标检测原理

l  神经网络及Darknet的C语言实现,尤其是反向传播的梯度求解和误差计算

l  代码阅读工具及方法

l  深度学习计算的利器:BLAS和GEMM

l  GPU的CUDA编程方法及在Darknet的应用

l  YOLOv3的程序流程及各层的源码解析

 

本课程将提供注释后的Darknet的源码程序文件。


除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测的系列课程,包括:

《YOLOv3目标检测实战:训练自己的数据集》

《YOLOv3目标检测实战:交通标志识别》

《YOLOv3目标检测:原理与源码解析》

《YOLOv3目标检测:网络模型改进方法》


建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。

展开更多
发布
头像

{{ item.user.nick_name }} {{ EROLE_NAME[item.user.identity] }}

置顶笔记
讨论图
{{ item.create_time }}回复
  • 删除

    是否确认删除?

    确认
    取消
  • {{ item.is_top == 1 ? '取消置顶' : '置顶'}}

    已有置顶的讨论,是否替换已有的置顶?

    确认
    取消
{{ tag.text}}
头像
{{ subitem.user.nick_name }}{{ EROLE_NAME[subitem.user.identity] }}
{{ subitem.create_time }}回复
删除

是否确认删除?

确认
取消
发布
讨论区空空如也,你来讲两句~
发布
{{tips.text}}
{{ noteHeaderTitle }} 笔记{{ hasMyNote ? '我的笔记' : '记笔记' }}
{{ hasMyNote ? '我的笔记' : '记笔记' }}
优质笔记
更新于:{{ $dayjs.formate('YYYY-MM-DD HH:mm:ss', item.last_uptime*1000) }}
头像
{{ detail.username }}

公开笔记对他人可见,有机会被管理员评为“优质笔记”

{{ noteEditor.content.length }}/2000

公开笔记
保存
提问

讲师收到你的提问会尽快为你解答。若选择公开提问,可以获得更多学员的帮助。

记录时间点
记录提问时视频播放的时间点,便于后续查看
公开提问
提交