当前播放:

课程介绍

离线观看

下载学堂APP

缓存视频离线看

报告问题

课程介绍

笔记

问答

学员评价

适合人群
具有一定深度学习基础,希望掌握YOLOv3目标检测实战方法的同学们
课程目标
学习和学习YOLOv3目标检测训练自己的数据集方法
课程简介

告知:YOLOv4来了!与YOLOv3相比,新版本的AP(精度)和FPS(每秒帧率)分别提高了10%和12%。有意学习新课程《YOLOv4目标检测实战:训练自己的数据集》的同学,请前往https://edu.51cto.com/course/22982.html。


YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。


本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。


Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。


除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:

《YOLOv3目标检测实战:交通标志识别》

《YOLOv3目标检测:原理与源码解析》

《YOLOv3目标检测:网络模型改进方法》



下图是使用YOLOv3对足球和梅西同时进行目标检测的测试结果:

predictions-ball-messi.jpg

展开更多
加载中
加载中
没有了哦~
加载中
没有了哦~

5

学员评分

1
非常糟

2
很差

3
一般

4
很好

5
非常好

  • 0%
  • 0%
  • 0%
  • 0%
  • 0%
    加载中
    没有了哦~